Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.221
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473977

RESUMO

Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.


Assuntos
Peixes Listrados , Fatores de Crescimento Neural , Receptores de Fator de Crescimento Neural , Humanos , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Retina/metabolismo , Receptor trkA , Neurotrofina 3 , Fator Neurotrófico Derivado do Encéfalo
2.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 56-61, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372112

RESUMO

The present study aimed to study the repair effect of neurotrophic factor III (NT-3) on spinal injury model rats and its mechanism. Wistar rats with spinal injury were established by accelerated compression stroke after the operation and divided into control group, model group, and NT-3 intervention group. The motor function of rats in each group was evaluated at different postoperative time points (3, 7, 14 d). HE staining was used to detect the changes in tissue structure and morphology of the injured spinal column in each group. The changes of SOD, MDA and GSH in serum of rats were detected. The concentrations of inflammatory cytokines IL-1ß, IL-6, IL-17 and TNF-α in serum were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was used to detect the expression changes of anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (Bax) in injured spinal tissue of rats in each group. Compared with model group, motor function score of NT-3 intervention group increased gradually, and had statistical significance at 7 and 14 days (5.29±1.62 vs 9.33±2.16, 5.92±1.44 vs 14.56±2.45, T =7.386, 9.294, P =0.004, 0.000). The levels of SOD and GSH in serum of NT-3 intervention group were significantly increased (t=9.117, 12.207, P=0.000, 0.000), while the level of MDA was significantly decreased (t=5.089, P=0.011). Serum levels of inflammatory cytokines IL-1ß, IL-6, IL-17 and TNF-α in NT-3 intervention group were significantly decreased (T =6.157, 7.958, 6.339, 6.288, P=0.008, 0.005, 0.005, 0.007). In the NT-3 treatment group, Bax protein was significantly decreased (0.24±0.05 vs 0.89±0.12, T =8.579, P=0.001), and the relative expression of Bcl-2 protein was significantly increased (0.75±0.06 vs 0.13±0.05, T =9.367, P=0.001). Neurotrophic factor III can promote spinal injury repair in spinal injury model rats, and play a role by enhancing antioxidant stress ability, inhibiting inflammatory factors, promoting Bcl-2 and decreasing Bax expression.


Assuntos
Interleucina-17 , Neurotrofina 3 , Traumatismos da Coluna Vertebral , Animais , Ratos , Proteína X Associada a bcl-2 , Citocinas , Interleucina-1beta , Interleucina-6 , Fatores de Crescimento Neural , Proteínas Proto-Oncogênicas c-bcl-2 , Ratos Sprague-Dawley , Ratos Wistar , Superóxido Dismutase , Tromboplastina , Fator de Necrose Tumoral alfa/metabolismo
3.
Behav Brain Res ; 461: 114857, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38211776

RESUMO

Memory consolidation is an essential process of long-term memory formation. Neurotrophins have been suggested as key regulators of activity dependent changes in the synaptic efficacy and morphology, which are considered the downstream mechanisms of memory consolidation. The neurotrophin 3 (NT-3), a member of the neurotrophin family, and its high affinity receptor TrkC, are widely expressed in the insular cortex (IC), a region with a critical role in the consolidation of the conditioned taste aversion (CTA) paradigm, in which an animal associates a novel taste with nausea. Nevertheless, the role of this neurotrophin in the cognitive processes that the IC mediates remains unexamined. To answer whether NT-3 is involved in memory consolidation at the IC, adult male Wistar rats were administered with NT-3 or NT-3 in combination with the Trk receptors inhibitor K252a into the IC, immediately after CTA acquisition under two different conditions: a strong-CTA (0.2 M lithium chloride i.p.) or a weak-CTA (0.1 M lithium chloride i.p.). Our results show that NT-3 strengthens the memory trace of CTA, transforming a weak conditioning into a strong one, in a Trk-dependent manner. The present evidence suggests that NT-3 has a key role in the consolidation process of an aversive memory in a neocortical region.


Assuntos
Córtex Cerebral , Córtex Insular , Ratos , Animais , Masculino , Ratos Wistar , Paladar , Cloreto de Lítio/farmacologia , Neurotrofina 3 , Aprendizagem da Esquiva
4.
J Transl Med ; 21(1): 733, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848983

RESUMO

BACKGROUND: Maintaining the repair phenotype of denervated Schwann cells in the injured distal nerve is crucial for promoting peripheral nerve regeneration. However, when chronically denervated, the capacity of Schwann cells to support repair and regeneration deteriorates, leading to peripheral nerve regeneration and poor functional recovery. Herein, we investigated whether neurotrophin-3 (NT-3) could sustain the reparative phenotype of Schwann cells and promote peripheral nerve regeneration after chronic denervation and aimed to uncover its potential molecular mechanisms. METHODS: Western blot was employed to investigate the relationship between the expression of c-Jun and the reparative phenotype of Schwann cells. The inducible expression of c-Jun by NT-3 was examined both in vitro and in vivo with western blot and immunofluorescence staining. A chronic denervation model was established to study the role of NT-3 in peripheral nerve regeneration. The number of regenerated distal axons, myelination of regenerated axons, reinnervation of neuromuscular junctions, and muscle fiber diameters of target muscles were used to evaluate peripheral nerve regeneration by immunofluorescence staining, transmission electron microscopy (TEM), and hematoxylin and eosin (H&E) staining. Adeno-associated virus (AAV) 2/9 carrying shRNA, small molecule inhibitors, and siRNA were employed to investigate whether NT-3 could signal through the TrkC/ERK pathway to maintain c-Jun expression and promote peripheral nerve regeneration after chronic denervation. RESULTS: After peripheral nerve injury, c-Jun expression progressively increased until week 5 and then began to decrease in the distal nerve following denervation. NT-3 upregulated the expression of c-Jun in denervated Schwann cells, both in vitro and in vivo. NT-3 promoted peripheral nerve regeneration after chronic denervation, mainly by upregulating or maintaining a high level of c-Jun rather than NT-3 itself. The TrkC receptor was consistently presented on denervated Schwann cells and served as NT-3 receptors following chronic denervation. NT-3 mainly upregulated c-Jun through the TrkC/ERK pathway. CONCLUSION: NT-3 promotes peripheral nerve regeneration by maintaining the repair phenotype of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. It provides a potential target for the clinical treatment of peripheral nerve injury after chronic denervation.


Assuntos
Regeneração Nervosa , Neurotrofina 3 , Traumatismos dos Nervos Periféricos , Células de Schwann , Humanos , Axônios/metabolismo , Denervação , Sistema de Sinalização das MAP Quinases , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Receptores Proteína Tirosina Quinases/metabolismo , Células de Schwann/metabolismo
5.
Neuro Endocrinol Lett ; 44(7): 439-443, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37874553

RESUMO

BACKGROUND: Neurotrophins (NTs) encompass a group of closely associated proteins regulating various aspects of neuronal growth and survival. The potential association between work-related factors and the levels of circulating NTs has not been extensively examined. In this preliminary investigation, we evaluated plasma concentrations of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) in a cohort of healthy individuals from three distinct professional categories, each with unique work environments and lifestyle factors. METHODS: The study involved 60 men from three professional fields: airline pilots, construction laborers, and fitness trainers (20 participants per category) recruited during routine occupational health appointments. Plasma levels of NTs were measured using commercially available immunoassays and compared in the three professional groups. RESULTS: Among the professions studied, fitness instructors displayed the highest concentrations of BDNF and NGF, with airline pilots ranking second, and construction workers showing the lowest levels. Significantly decreased NT-3 levels were observed in airline pilots compared to fitness instructors and construction workers, but no differences were found between the latter two occupations. NT-4 levels were similar across all three occupational groups. CONCLUSIONS: Our pilot results suggest that plasma concentrations of NTs, which are involved in various aspects of neuronal and cognitive functioning, may display significant differences among healthy individuals depending on their occupation. These observations warrant additional research to explore potential implications for the field of occupational medicine.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Indústria da Construção , Masculino , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator de Crescimento Neural/metabolismo , Neurotrofina 3 , Neurônios/metabolismo , Ocupações
6.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298444

RESUMO

Neurotrophins (NTFs) are structurally related neurotrophic factors essential for differentiation, survival, neurite outgrowth, and the plasticity of neurons. Abnormalities associated with neurotrophin-signaling (NTF-signaling) were associated with neuropathies, neurodegenerative disorders, and age-associated cognitive decline. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) has the highest expression and is expressed in mammals by specific cells throughout the brain, with particularly high expression in the hippocampus and cerebral cortex. Whole genome sequencing efforts showed that NTF signaling evolved before the evolution of Vertebrates; thus, the shared ancestor of Protostomes, Cyclostomes, and Deuterostomes must have possessed a single ortholog of neurotrophins. After the first round of whole genome duplication that occurred in the last common ancestor of Vertebrates, the presence of two neurotrophins in Agnatha was hypothesized, while the monophyletic group of cartilaginous fishes, or Chondrichthyans, was situated immediately after the second whole genome duplication round that occurred in the last common ancestor of Gnathostomes. Chondrichthyans represent the outgroup of all other living jawed vertebrates (Gnathostomes) and the sister group of Osteichthyans (comprehensive of Actinopterygians and Sarcopterygians). We were able to first identify the second neurotrophin in Agnatha. Secondly, we expanded our analysis to include the Chondrichthyans, with their strategic phylogenetic position as the most basal extant Gnathostome taxon. Results from the phylogenetic analysis confirmed the presence of four neurotrophins in the Chondrichthyans, namely the orthologs of the four mammalian neurotrophins BDNF, NGF, NT-3, and NT-4. We then proceeded to study the expression of BDNF in the adult brain of the Chondrichthyan Scyliorhinus canicula. Our results showed that BDNF is highly expressed in the S. canicula brain and that its expression is highest in the Telencephalon, while the Mesencephalic and Diencephalic areas showed expression of BDNF in isolated and well-defined cell groups. NGF was expressed at much lower levels that could be detected by PCR but not by in situ hybridization. Our results warrant further investigations in Chondrichthyans to characterize the putative ancestral function of neurotrophins in Vertebrates.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Elasmobrânquios , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Filogenia , Vertebrados/genética , Vertebrados/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Peixes/metabolismo , Neurotrofina 3/metabolismo , Mamíferos/metabolismo
7.
Sci Signal ; 16(787): eadf6696, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253090

RESUMO

Organ size is maintained by the controlled proliferation of distinct cell populations. In the mouse liver, hepatocytes in the midlobular zone that are positive for cyclin D1 (CCND1) repopulate the parenchyma at a constant rate to preserve liver mass. Here, we investigated how hepatocyte proliferation is supported by hepatic stellate cells (HSCs), pericytes that are in close proximity to hepatocytes. We used T cells to ablate nearly all HSCs in the murine liver, enabling the unbiased characterization of HSC functions. In the normal liver, complete loss of HSCs persisted for up to 10 weeks and caused a gradual reduction in liver mass and in the number of CCND1+ hepatocytes. We identified neurotrophin-3 (Ntf-3) as an HSC-produced factor that induced the proliferation of midlobular hepatocytes through the activation of tropomyosin receptor kinase B (TrkB). Treating HSC-depleted mice with Ntf-3 restored CCND1+ hepatocytes in the midlobular region and increased liver mass. These findings establish that HSCs form the mitogenic niche for midlobular hepatocytes and identify Ntf-3 as a hepatocyte growth factor.


Assuntos
Células Estreladas do Fígado , Fígado , Neurotrofina 3 , Animais , Camundongos , Proliferação de Células , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Neurotrofina 3/metabolismo
8.
Sci Rep ; 13(1): 4571, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941445

RESUMO

The purpose of this study was to determine whether altered serum and/or muscle concentrations of brain-derived neurotrophic factor (BDNF) can modify the electrophysiological properties of spinal motoneurons (MNs). This study was conducted in wild-type and Bdnf heterozygous knockout rats (HET, SD-BDNF). Rats were divided into four groups: control, knockout, control trained, and knockout trained. The latter two groups underwent moderate-intensity endurance training to increase BDNF levels in serum and/or hindlimb muscles. BDNF and other neurotrophic factors (NFs), including glial cell-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), nerve growth factor (NGF), and neurotrophin-4 (NT-4) were assessed in serum and three hindlimb muscles: the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (Sol). The concentrations of tropomyosin kinase receptor B (Trk-B), interleukin-15 (IL-15), and myoglobin (MYO/MB) were also evaluated in these muscles. The electrophysiological properties of lumbar MNs were studied in vivo using whole-cell current-clamp recordings. Bdnf knockout rats had reduced levels of all studied NFs in serum but not in hindlimb muscles. Interestingly, decreased serum NF levels did not influence the electrophysiological properties of spinal MNs. Additionally, endurance training did not change the serum concentrations of any of the NFs tested but significantly increased BDNF and GDNF levels in the TA and MG muscles in both trained groups. Furthermore, the excitability of fast MNs was reduced in both groups of trained rats. Thus, changes in muscle (but not serum) concentrations of BDNF and GDNF may be critical factors that modify the excitability of spinal MNs after intense physical activity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurotrofina 3/metabolismo , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo
9.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768339

RESUMO

Neurotrophins promote neurite outgrowth of auditory neurons and may help closing the gap to cochlear implant (CI) electrodes to enhance electrical hearing. The best concentrations and mix of neurotrophins for this nerve regrowth are unknown. Whether electrical stimulation (ES) during outgrowth is beneficial or may direct axons is another open question. Auditory neuron explant cultures of distinct cochlear turns of 6-7 days old mice were cultured for four days. We tested different concentrations and combinations of BDNF and NT-3 and quantified the numbers and lengths of neurites with an advanced automated analysis. A custom-made 24-well electrical stimulator based on two bulk CIs served to test different ES strategies. Quantification of receptors trkB, trkC, p75NTR, and histological analysis helped to analyze effects. We found 25 ng/mL BDNF to perform best, especially in basal neurons, a negative influence of NT-3 in combined BDNF/NT-3 scenarios, and tonotopic changes in trk and p75NTR receptor stainings. ES largely impeded neurite outgrowth and glia ensheathment in an amplitude-dependent way. Apical neurons showed slight benefits in neurite numbers and length with ES at 10 and 500 µA. We recommend BDNF as a potent drug to enhance the man-machine interface, but CIs should be better activated after nerve regrowth.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Implantes Cocleares , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Receptores de Fator de Crescimento Neural , Neuritos , Nervo Coclear , Estimulação Elétrica , Crescimento Neuronal , Neurotrofina 3
10.
J Neurosci ; 43(9): 1492-1508, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653191

RESUMO

NG2 is a structurally unique transmembrane chondroitin sulfate proteoglycan (CSPG). Its role in damaged spinal cord is dual. NG2 is considered one of key inhibitory factors restricting axonal growth following spinal injury. Additionally, we have recently detected its novel function as a blocker of axonal conduction. Some studies, however, indicate the importance of NG2 presence in the formation of synaptic contacts. We hypothesized that the optimal treatment would be neutralization of inhibitory functions of NG2 without its physical removal. Acute intraspinal injections of anti-NG2 monoclonal antibodies reportedly prevented an acute block of axonal conduction by exogenous NG2. For prolonged delivery of NG2 function neutralizing antibody, we have developed a novel gene therapy: adeno-associated vector (AAV) construct expressing recombinant single-chain variable fragment anti-NG2 antibody (AAV-NG2Ab). We examined effects of AAV-NG2Ab alone or in combination with neurotrophin NT-3 in adult female rats with thoracic T10 contusion injuries. A battery of behavioral tests was used to evaluate locomotor function. In vivo single-cell electrophysiology was used to evaluate synaptic transmission. Lower urinary tract function was assessed during the survival period using metabolic chambers. Terminal cystometry, with acquisition of external urethral sphincter activity and bladder pressure, was used to evaluate bladder function. Both the AAV-NG2Ab and AAV-NG2Ab combined with AAV-NT3 treatment groups demonstrated significant improvements in transmission, locomotion, and bladder function compared with the control (AAV-GFP) group. These functional improvements associated with improved remyelination and plasticity of 5-HT fibers. The best results were observed in the group that received combinational AAV-NG2Ab+AAV-NT3 treatment.SIGNIFICANCE STATEMENT We recently demonstrated beneficial, but transient, effects of neutralization of the NG2 proteoglycan using monoclonal antibodies delivered intrathecally via osmotic mini-pumps after spinal cord injury. Currently, we have developed a novel gene therapy tool for prolonged and clinically relevant delivery of a recombinant single-chain variable fragment anti-NG2 antibody: AAV-rh10 serotype expressing scFv-NG2 (AAV-NG2Ab). Here, we examined effects of AAV-NG2Ab combined with transgene delivery of Neurotrophin-3 (AAV-NT3) in adult rats with thoracic contusion injuries. The AAV-NG2Ab and AAV-NG2Ab+AAV-NT3 treatment groups demonstrated significant improvements of locomotor function and lower urinary tract function. Beneficial effects of this novel gene therapy on locomotion and bladder function associated with improved transmission to motoneurons and plasticity of axons in damaged spinal cord.


Assuntos
Contusões , Anticorpos de Cadeia Única , Traumatismos da Medula Espinal , Sistema Urinário , Animais , Feminino , Ratos , Contusões/terapia , Locomoção , Fatores de Crescimento Neural , Recuperação de Função Fisiológica/genética , Medula Espinal , Transmissão Sináptica , Neurotrofina 3
11.
Biol Trace Elem Res ; 201(2): 689-697, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35349008

RESUMO

BACKGROUND: Epilepsy is one of the most common neurological disorders, and it places a significant economic strain on the healthcare system around the world. Although the exact mechanism of epilepsy has yet to be illustrated, various pathogenic cascades involving neurotransmitters and trace elements have been reported. We aimed to investigate the serum levels of growth-associated protein-43 (GAP-43) and neurotrophin-3 (NT-3) among cohort of Egyptian children with epilepsy and correlate these biomarkers with their zinc levels. METHODS: This case-control study included 50 pediatric patients with epilepsy who were comparable with 50 controls. Neurological assessment and electroencephalogram (EEG) were done to all included children. Biochemical measurements of serum GAP-43 and NT-3 using enzyme linked immunosorbent assays (ELISA), and total antioxidant capacity (TAC) and zinc using colorimetric assays, were performed to all participants. RESULTS: There was significantly frequent positive parental consanguinity among cases with significantly frequent generalized onset seizures (94%) than simple partial seizure (6%). There were significantly lower serum GAP-43 and zinc levels with significantly higher TAC among cases vs. the controls, p˂0.05 for all. There was no significant difference in the serum levels of NT-3 among epileptic children vs. the controls, p = 0.269. Serum Zn was positively correlated with GAP-43 level among epileptic children (r = 0.381, p = 0.006). Serum GAP-43 in diagnosing childhood epilepsy at cut-off point ≤ 0.6 ng/mL showed 78% sensitivity, 62% specificity, positive predictive value (PPV) = 50.6%, negative predictive value (NPP) = 84.9% with AUC = 0.574. CONCLUSION: GAP-43 can be considered a sensitive good negative biomarker in childhood epilepsy which correlated positively with the zinc status.


Assuntos
Epilepsia , Proteína GAP-43 , Neurotrofina 3 , Zinco , Criança , Humanos , Estudos de Casos e Controles , Epilepsia/diagnóstico , Proteína GAP-43/sangue , Oligoelementos , Neurotrofina 3/sangue , Egito
12.
Exp Neurol ; 360: 114278, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36455639

RESUMO

Intramuscular injection of an Adeno-associated viral vector serotype 1 (AAV1) encoding Neurotrophin-3 (NT3) into hindlimb muscles 24 h after a severe T9 spinal level contusion in rats has been shown to induce lumbar spinal neuroplasticity, partially restore locomotive function and reduce spasms during swimming. Here we investigate whether a targeted delivery of NT3 to lumbar and thoracic motor neurons 48 h following a severe contusive injury aids locomotive recovery in rats. AAV1-NT3 was injected bilaterally into the tibialis anterior, gastrocnemius and rectus abdominus muscles 48-h following trauma, persistently elevating serum levels of the neurotrophin. NT3 modestly improved trunk stability, accuracy of stepping during skilled locomotion, and alternation of the hindlimbs during swimming, but it had no effect on gross locomotor function in the open field. The number of vGlut1+ boutons, likely arising from proprioceptive afferents, on gastrocnemius α-motor neurons was increased after injury but normalised following NT3 treatment, suggestive of a mechanism in which functional benefits may be mediated through proprioceptive feedback. Ex vivo MRI revealed substantial loss of grey and white matter at the lesion epicentre but no effect of delayed NT3 treatment to induce neuroprotection. Lower body spasms and hyperreflexia of an intrinsic paw muscle were not reliably induced in this severe injury model suggesting a more complex anatomical or physiological cause to their induction. We have shown that delayed intramuscular AAV-NT3 treatment can promote recovery in skilled stepping and coordinated swimming, supporting a role for NT3 as a therapeutic strategy for spinal injuries potentially through modulation of somatosensory feedback.


Assuntos
Contusões , Traumatismos da Medula Espinal , Ratos , Animais , Neurotrofina 3 , Fatores de Crescimento Neural/farmacologia , Membro Posterior , Espasmo , Recuperação de Função Fisiológica , Medula Espinal/patologia
13.
Int J Biol Sci ; 18(15): 5963-5977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263167

RESUMO

Although liver cancer is a malignant tumor with the highest mortality across the world, its pathogenesis and therapeutic targets remain unclear. Apoptosis, a natural cell death mechanism, is an important target of anticancer therapy. The discovery of effective apoptotic regulators can lead to the identification of novel therapeutic targets for treating cancer. Neurotrophin 3 (NTF3) is a member of the nerve growth factor (NGF) family that is involved in the progression of various cancers, including medulloblastoma, primitive neuroectodermal brain tumors, and breast cancer. NTF3 is under-expressed in human hepatocellular carcinoma (HCC), albeit its specific effects and the action mechanism have not been elucidated. Here, we confirmed that NTF3 expression was significantly low in HCC with reference to the GSEA database. By collecting patient data from our center and performing qRT-PCR analysis, we found that NTF3 expression was significantly downregulated in 74 patients with HCC. Low NTF3 expression was associated with a shorter overall survival (OS), recurrence-free survival (RFS), progression-free survival (PFS), and disease-specific survival (DSS). Both in vivo and in vitro experiments revealed that NTF3 considerably inhibited the progression of HCC cells. We found that the ligand NTF3 is regulated by c-Jun and binds to the p75 neurotrophin receptor (p75NTR) and then activates the JNK and P38 MAPK pathways to induce apoptosis. Entinostat (the target of HDAC1/HDAC3) can activate the NTF3/p75NTR pathway. These results indicate that NTF3 is a tumor suppressor, and that its low expression can help in predict poor clinical outcomes in HCC. Therefore, NTF3 can be used as a potential treatment molecule for HCC.


Assuntos
Apoptose , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neurotrofina 3 , Humanos , Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ligantes , Neoplasias Hepáticas/metabolismo , Fator de Crescimento Neural , Neurotrofina 3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Transdução de Sinais
14.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887075

RESUMO

Neurotrophins are a family of secreted proteins expressed in the peripheral nervous system and the central nervous system that support neuronal survival, synaptic plasticity, and neurogenesis. Brain-derived neurotrophic factor (BDNF) and its high affinity receptor TrkB are highly expressed in the cortical and hippocampal areas and play an essential role in learning and memory. The decline of cognitive function with aging is a major risk factor for cognitive diseases such as Alzheimer's disease. Therefore, an alteration of BDNF/TrkB signaling with aging and/or pathological conditions has been indicated as a potential mechanism of cognitive decline. In this review, we summarize the cellular function of neurotrophin signaling and review the current evidence indicating a pathological role of neurotrophin signaling, especially of BDNF/TrkB signaling, in the cognitive decline in aging and age-related cognitive diseases. We also review the therapeutic approach for cognitive decline by the upregulation of the endogenous BDNF/TrkB-system.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Humanos , Neurotrofina 3/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/fisiologia
15.
J Neurochem ; 161(6): 463-477, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35536742

RESUMO

In the central nervous system, most neurons co-express TrkB and TrkC, the tyrosine kinase receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). As NT3 can also activate TrkB, it has been difficult to understand how NT3 and TrkC can exert unique roles in the assembly of neuronal circuits. Using neurons differentiated from human embryonic stem cells expressing both TrkB and TrkC, we compared Trk activation by BDNF and NT3. To avoid the complications resulting from TrkB activation by NT3, we also generated neurons from stem cells engineered to lack TrkB. We found that NT3 activates TrkC at concentrations lower than those of BDNF needed to activate TrkB. Downstream of Trk activation, the changes in gene expression caused by TrkC activation were found to be similar to those resulting from TrkB activation by BDNF, including a number of genes involved in synaptic plasticity. At high NT3 concentrations, receptor selectivity was lost as a result of TrkB activation. In addition, TrkC was down-regulated, as was also the case with TrkB at high BDNF concentrations. By contrast, receptor selectivity as well as reactivation were preserved when neurons were exposed to low neurotrophin concentrations. These results indicate that the selectivity of NT3/TrkC signalling can be explained by the ability of NT3 to activate TrkC at concentrations lower than those needed to activate TrkB. They also suggest that in a therapeutic perspective, the dosage of Trk receptor agonists will need to be taken into account if prolonged receptor activation is to be achieved.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Glicoproteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação para Baixo , Humanos , Neurônios/metabolismo , Neurotrofina 3/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor trkB/genética , Receptor trkC/genética , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo
16.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563321

RESUMO

To date, no studies have addressed the role of neurotrophins (NTs) in Acanthamoeba spp. infections in the brain. Thus, to clarify the role of NTs in the cerebral cortex and hippocampus during experimental acanthamoebiasis in relation to the host immune status, the purpose of this study was to determine whether Acanthamoeba spp. may affect the concentration of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) in brain structures. Our results suggest that at the beginning of infection in immunocompetent hosts, BDNF and NT-3 may reflect an endogenous attempt at neuroprotection against Acanthamoeba spp. infection. We also observed a pro-inflammatory effect of NGF during acanthamoebiasis in immunosuppressed hosts. This may provide important information for understanding the development of cerebral acanthamoebiasis related to the immunological status of the host. However, the pathogenesis of brain acanthamoebiasis is still poorly understood and documented and, therefore, requires further research.


Assuntos
Acanthamoeba , Amebíase , Fatores de Crescimento Neural , Acanthamoeba/efeitos dos fármacos , Amebíase/tratamento farmacológico , Encéfalo/metabolismo , Encéfalo/microbiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurotrofina 3/metabolismo
17.
Bull Exp Biol Med ; 173(1): 114-118, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35622252

RESUMO

Neurotrophin-3 enhances the effectiveness of human olfactory ensheathing cells in improving hind limb mobility in rats with post-traumatic cysts of the spinal cord. Transplantation of olfactory ensheathing cells into spinal cord cysts reduced their size; neurotrophin-3 did not modulate this effect. Combined preparation of human olfactory ensheathing cells and neurotrophin- 3 can be used in neurosurgery for the treatment of patients with spinal cord injuries.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Cistos , Neurotrofina 3 , Traumatismos da Medula Espinal , Animais , Transplante de Células , Cistos/terapia , Humanos , Fatores de Crescimento Neural/genética , Regeneração Nervosa , Neurotrofina 3/farmacologia , Ratos , Medula Espinal , Traumatismos da Medula Espinal/terapia
18.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269763

RESUMO

The brain-derived neurotrophic factor (BDNF) was discovered in the last century, and identified as a member of the neurotrophin family. BDNF shares approximately 50% of its amino acid with other neurotrophins such as NGF, NT-3 and NT-4/5, and its linear amino acid sequences in zebrafish (Danio rerio) and human are 91% identical. BDNF functions can be mediated by two categories of receptors: p75NTR and Trk. Intriguingly, BDNF receptors were highly conserved in the process of evolution, as were the other NTs' receptors. In this review, we update current knowledge about the distribution and functions of the BDNF-TrkB system in the sensory organs of zebrafish. In fish, particularly in zebrafish, the distribution and functions of BDNF and TrkB in the brain have been widely studied. Both components of the system, associated or segregated, are also present outside the central nervous system, especially in sensory organs including the inner ear, lateral line system, retina, taste buds and olfactory epithelium.


Assuntos
Orelha Interna , Papilas Gustativas , Animais , Fator Neurotrófico Derivado do Encéfalo , Neurotrofina 3 , Receptor trkB , Receptores de Fator de Crescimento Neural/genética , Peixe-Zebra
19.
Pak J Pharm Sci ; 35(1(Special)): 349-354, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35236646

RESUMO

To explore the effects of butylphthalide on the levels of serum CRP, PAPK7, NT-3 and neurological function in patients with acute cerebral infarction (ACI). 120 patients with ACI who were treated at Peking University First Hospital from September 2014 to June 2016 were selected as the research objects. The patients were randomly divided into a control group and an observation group, with 60 cases in each group. Conventional methods were adopted in the control group, and the observation group used butylphthalide for treatment. Two months later, the clinical efficacy, serum C-reactive protein (CRP), Parkinson's disease protein 7 (PAPK7), neurotrophic factor-3 (NT-3) levels, and the National Institutes of Health Stroke Scale (NIHSS) score before and after treatment were put into comparison and analysis. Before treatment, the NIHSS score showed no significant difference between the two groups (p>0.05); An observably higher NIHSS score of the observation group compared with the control group was seen after treatment (p=0.000). Butylphthalide has a significant therapeutic effect on patients with ACI. It can effectively restore the patients' neurological function, and remarkably improve the serum CRP, PAPK7 and NT-3 levels, which is worthy of clinical promotion.


Assuntos
Benzofuranos , Proteína C-Reativa , Infarto Cerebral , Regulação da Expressão Gênica , Neurotrofina 3 , Proteína Desglicase DJ-1 , Idoso , Feminino , Humanos , Masculino , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Proteína C-Reativa/metabolismo , Infarto Cerebral/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neurotrofina 3/sangue , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Proteína Desglicase DJ-1/sangue , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo
20.
J Control Release ; 342: 295-307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999140

RESUMO

Hearing loss is the most prevalent sensory disorder affecting nearly half a billion people worldwide. Aside from devices to assist hearing, such as hearing aids and cochlear implants, a drug treatment for hearing loss has yet to be developed. The neurotrophin family of growth factors has long been established as a potential therapy, however delivery of these factors into the inner ear at therapeutic levels over a sustained period of time has remained a challenge restricting clinical translation. We previously demonstrated that direct delivery of exogenous neurotrophin-3 (NT3) in the guinea pig cochleae via a bolus injection was rapidly cleared from the inner ear, with almost complete elimination 3 days post-treatment. Here, we explored the potential of suprapaticles (SPs) for NT3 delivery to the inner ear to achieve sustained delivery over time. SPs are porous spheroid structures comprised of smaller colloidal silica nanoparticles that provide a platform for long-term controlled release of therapeutics. This study aimed to assess the pharmacokinetics and biodistribution of SP-delivered NT3. We used a radioactive tracer (iodine 125: 125I) to label the NT3 to determine the loading, retention and distribution of NT3 delivered via SPs. Gamma measurements taken from 125I NT3 loaded SPs revealed high drug loading (an average of 5.3 µg of NT3 loaded per SP weighing 50 µg) and elution capacities in vitro (67% cumulative release over one month). Whole cochlear gamma measurements from SP-implanted cochleae harvested at various time points revealed detection of 125I NT3 in the guinea pig cochlea after one month, with 3.6 and 10% of the loaded drug remaining in the intracochlear and round window-implanted cochleae respectively. Autoradiography analysis of cochlear micro-sections revealed widespread 125I NT3 distribution after intracochlear SP delivery, but more restricted distribution with the round window delivery approach. Collectively, drug delivery into the inner ear using SPs support sustained, long-term availability and release of neurotrophins in the inner ear.


Assuntos
Surdez , Orelha Interna , Animais , Cóclea , Surdez/tratamento farmacológico , Cobaias , Humanos , Neurotrofina 3 , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...